Revision as of 00:07, 7 April 2008 by Lbachega (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The LGB algorithm is another clustering technique. It has a slightly different approach compared to K-means_OldKiwi. In this algorithm the user inputs the number of clusters he wants to split his data set into. It has to be a power of 2.

The algorithm works as follows:

1) Find the sample mean of the data. Let that me some mu.

2) To this mean add and subtract a small value epsilon. Thus we will have 2 new means mu +epsilon and mu-epsilon.For every data point in the set find which mean it belongs to. Now we have thus clustered the data into 2 parts.

3) For each of this part evaluate the new means. Now again split each of the means into 2 more.

4) Continue till we get the desired number of clusters.

This algorithm will ensure that we have the desired number of clusters.

The algorithm is named after Linde,Buzo and Gray.

Example OldKiwi.jpg

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010