Revision as of 12:34, 22 July 2008 by Wardbc (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

4a) $ lim_{t\rightarrow 0} \int_0^1 \frac{e^{-tln(x)}-1}{t} dx = lim_{t\rightarrow 0} \int_0^1 \frac{x^{-t}-1}{t} dx $

$ = lim_{t\rightarrow 0} \frac{1}{t}[\frac{x^{-t+1}}{-t+1}-x]_0^1 = lim_{t\rightarrow 0} \frac{1}{t}[\frac{1^{-t+1}}{-t+1}-1] $

$ = lim_{t\rightarrow 0} \ 0 = 0 $.


4b)

$ lim_{n\rightarrow \infty} \int_1^{n^2} \frac{n cos (\frac{x}{n^2})}{1+nln(x)}dx = lim_{n\rightarrow \infty} \int_1^{\infty} \frac{n cos (\frac{x}{n^2})}{1+nln(x)}\chi_{(1,n^2)} dx \geq \int_1^{\infty} lim_{n\rightarrow \infty} \frac{n cos (\frac{x}{n^2})}{1+nln(x)}\chi_{(1,n^2)} dx $ (Fatou)


$ \geq \int_1^{\infty} lim_{n\rightarrow \infty} \frac{n cos(1)}{1+nln(x)}\chi_{(1,n^2)} dx = \int_1^{\infty} lim_{n\rightarrow \infty} \frac{n cos(1)}{1+nln(x)} dx $

$ = cos(1)\int_1^{\infty} lim_{n\rightarrow \infty} \frac{n}{1+nln(x)} = cos(1)\int_1^{\infty}\frac{1}{ln(x)} \ \forall \ x>1 $ by L'Hospital

and since $ \frac{1}{ln(x)}>\frac{1}{x} \ \forall x>1, cos(1)\int_1^{\infty}\frac{1}{ln(x)}=\infty $

So $ lim_{n\rightarrow \infty} \int_1^{n^2} \frac{n cos (\frac{x}{n^2})}{1+nln(x)}dx =\infty $.


--Wardbc 13:34, 22 July 2008 (EDT)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood