The case $ \mu(X)=\infty $ the inequality is true.
Suppose $ \mu(X) $ is finite, we have
Given $ p^{'}=\frac{p+r}{2} $,
$ \int_{X}|f|^{r}d\mu = \int_{X}|f|^{p^{'}} $
The case $ \mu(X)=\infty $ the inequality is true.
Suppose $ \mu(X) $ is finite, we have
Given $ p^{'}=\frac{p+r}{2} $,
$ \int_{X}|f|^{r}d\mu = \int_{X}|f|^{p^{'}} $