Revision as of 22:07, 17 June 2008 by Srudolph (Talk | contribs)

The six basic properties of Systems_Old Kiwi

Memory_Old Kiwi

A system with memory has outputs that depend on previous (or future) inputs.

  • Example of a system with memory:

$ y(t) = x(t - \pi) $

  • Example of a system without memory:

$ y(t) = x(t) $

Invertibility_Old Kiwi

An invertible system is one in which there is a one-to-one correlation between inputs and outputs.

  • Example of an invertible system:

$ y(t) = x(t) $

  • Example of a non-invertible system:

$ y(t) = |x(t)| $

In the second example, both x(t) = -3 and x(t) = 3 yield the same result.

Causality_Old Kiwi

A causal system has outputs that only depend on current and/or previous inputs.

  • Example of a causal system:

$ y(t) = x(t) + x(t - 1) $

  • Example of a non-causal system:

$ y(t) = x(t) + x(t + 1) $

Stability_Old Kiwi

There are many types of stability, for this course, we first consider BIBO_Old Kiwi (Bounded Input Bounded Output) stability.

A system is BIBO stable if, for all bounded inputs ($ \exist B \epsilon \Re, x(t) < B $), the output is also bounded ($ y(t) < \infty $)

Time Invariance_Old Kiwi

A system is time invariant if a shift in the time domain corresponds to the same shift in the output.

  • Example of a time invariant system:

$ y(t) = x(t) \mapsto y(t - t_0) = x(t - t_0) $

  • Example of a time variant system:

$ y(t) = \sin(t) x(t) \mapsto y(t - t_0) \neq \sin(t) x(t - t_0) $

Linearity_Old Kiwi

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010