Revision as of 13:53, 7 April 2008 by Yoder2 (Talk)

$ f:\Omega \rightarrow \Re ^ m, \Omega \subset \Re ^n $

Function $ f $ is said to be k-th continuously differentiable on $ \Omega $, $ f \in \mathbb{C}^{k} $,

if each component of f has continuous partials of order k on $ \Omega $.

Example.

  • For k=0, f is said to be coutinuous
  • For k=1, f is said to be continuously differentiable

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang