Revision as of 17:19, 1 April 2009 by Jcromer (Talk | contribs)

Corollary 3 of THM 16.2 : "A polynomial of degree n over a field has at most n zeros, counting multiplicity"

Fields and an finite integral domains are one and the same. (THM 13.2)

Finite integral domains are commutative rings with unity and no zero-divisors (Definition of integral domain)

So, if the commutative ring has zero divisors, it cannot be a field, thus no polynomials may over it, thus Corollary 3 is false for any ring with zero-divisors.

Not sure if this is sound. Comments? --Bcaulkin 21:27, 1 April 2009 (UTC)


So, I'm not entirely sure what angle the question is going at, but I think taking x^3 in Z mod 8Z will work as an example showing that the corollary does not hold. --Jcromer 22:19, 1 April 2009 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood