Revision as of 23:58, 11 February 2009 by Kangw (Talk | contribs)

Back to HW 4: 5.5

I tried using the equation listed in the book, but I ended up with 0 in the denominator, am I missing something?

Using the equation on page 378 I got 41.--Spfeifer 20:37, 11 February 2009 (UTC)

For this problem, I started looking at it as five indistinguishable objects into three indistinguishable boxes and then added the distinguishable part back in for the objects. You could have (5,0,0) (4,1,0) (3,2,0) (3,1,1) (2,2,1). Adding the distinguishable factor back in, for (5,0,0) there is 1 option, for (4,1,0) there is (5 choose 4)x(1 choose 1), for (3,2,0) there is (5 choose 3)x(2 choose 2), for (3,1,1) there is (5 choose 3)x(2 choose 1)x(1 choose 1), and for (2,2,1) there is (5 choose 2)x(3 choose 2)x(1 choose 1). Add these together and my answer was 66.

I'll verify that the response about the equation on page 378 is correct. As for getting a zero in the denominator, remember that 0! = 1. -NF



(5,0,0) (4,1,0) (3,2,0) (3,1,1) (2,2,1). Does the order matter for this problem?? I wasn't sure what to do

it seems to me that there are only five ways to arrange it..


it was for #54;; sorry

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman