Revision as of 06:24, 26 January 2009 by Norlow (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

A first order differential equation can be written as $ \frac{dy}{dx}=f(x,y) $ where f is some function that depends on x and y.

One simple example is the equation $ \frac{dy}{dx}=-ay+b $. If a is not 0, and y is not b/a, then we can rewrite this as follows: $ \frac{dy/dx}{y-(b/a)}=-a $

Integrating this gives $ ln|y-(b/a)|=-ax+C $ so the general solution is then $ y=(b/a)+ce^{-ax} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett