Revision as of 05:56, 3 November 2008 by Kpekkari (Talk)

the variance of a binomial random variable:

var(X)

      = E[X^2] - (E[X])^2
      = E[X(X-1)] + E[X] - (E[X])^2
      = n*(n-1)*P^2 + n*p - (n*p)^2
      = n*p - n*p^2

now, set n = 1000, take derivative with respect to p, set equal to zero, solve for p, and plug into var(x) equation to solve for the maximum value.


i end up getting p = .5 so max var(X) = 250 (when X is a binomial random variable with parameter 1000)

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison