Revision as of 05:55, 3 November 2008 by Kpekkari (Talk)

the variance of a binomial random variable: var(X) = E[X^2] - (E[X])^2

      = E[X(X-1)] + E[X] - (E[X])^2
      = n*(n-1)*P^2 + n*p - (n*p)^2
      = n*p - n*p^2

now, set n = 1000, take derivative with respect to p, set equal to zero, solve for p, and plug into var(x) equation to solve for the maximum value.


i end up getting p = .5 so max var(X) = 250 (when X is a binomial random variable with parameter 1000)

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang