Revision as of 05:15, 18 January 2009 by Narupley (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Choose 13 real numbers $ x_1,x_2,\ldots,x_{13}\in\mathbb{R} $ with $ x_i\neq x_j $ if $ i\neq j $. For these 13 numbers there exist at least two numbers amongst them such that

$ 0 < \frac{x_i-x_j}{1+x_ix_j} \leq 2-\sqrt{3} $

It's a tricky one to prove, unless you are one endowed with a certain amount of intuition (exempli gratia, Uli, et alii). Simple trigonometry and the ever overlooked Pigeonhole Principle are key tools to solving it.

--Nick Rupley 10:13, 18 January 2009 (UTC)

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal