Revision as of 08:08, 29 October 2008 by Ricec (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ n = a_k*10^k + ... + a_0*10^0 $

Say
$ \phi: Z \to Z_3 $
$ 10 \mapsto 1 $

n is divisible by 3 if and only if $ \phi(n) = 0 $

$ \phi(n) = \phi(a_k)*\phi(10)^k + ... + \phi(a_0)*\phi(10)^0 $
$ \phi(n) = \phi(a_k) + ... + \phi(a_0) $ (because 10 maps to 1, so $ \phi(10) = 1 $)
$ \phi(n) = \phi(a_k + ... + a_0) $

So if $ \phi(n) = 0 $, then $ \phi(a_k + ... + a_0) = 0 $.
$ \phi(a_k + ... + a_0) = 0 $ only when $ a_k + ... + a_0 $ is divisible by 3.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva