Revision as of 11:11, 12 December 2008 by Aehumphr (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

HWSolnNav

Problem 4.5

Find the inverse Fourier transform of:

$ X(j\omega) = |X(j\omega)|e^{j \sphericalangle X(j\omega)} $

Given that:

$ \big|X(j\omega)| = 2\lbrace u(\omega +3) - u(\omega - 3)\rbrace $
$ \sphericalangle X(j \omega) = -\frac{3}{2} \omega + \pi $

The entire integral:

$ \frac{2}{2\pi}\int_{-\infty}^{\infty}\Bigg(e^{-\frac{3}{2} j \omega + \pi j + j\omega t} u(\omega + 3) - e^{-\frac{3}{2} j \omega + \pi j + j\omega t} u(\omega - 3)\Bigg)\,d\omega $

Change the limits:

$ \frac{1}{\pi}e^{\pi j}\Bigg\{ \int_{3}^{\infty}\Bigg(e^{j\omega(t-\frac{3}{2})}\Bigg)\,d\omega - \int_{-3}^{\infty}\Bigg(e^{j\omega(t-\frac{3}{2})} \Bigg)\,d\omega \Bigg\} $

Integrate:

$ \frac{1}{\pi}e^{\pi j}\Big\{ \Big(\frac{e^{j\omega(t-\frac{3}{2})}}{ jt- j\frac{3}{2} }\Big)\Bigg|_{3}^{\infty} - \Big(\frac{e^{j\omega(t-\frac{3}{2})}}{ jt- j\frac{3}{2} } \Big)\Bigg|_{-3}^{\infty} \Big\} $

The infinite terms cancel out:

$ \frac{1}{\pi}e^{\pi j}\Big\{ \Big( \frac{e^{3j(t-\frac{3}{2})}}{ jt- j\frac{3}{2} } \Big) - \Big( \frac{e^{-3j(t-\frac{3}{2})}}{jt - j\frac{3}{2}} \Big) \Big\} $

Combine terms:

$ \frac{1}{\pi}e^{\pi j}\Big\{ \frac{e^{3j(t-\frac{3}{2})} - e^{-3j(t-\frac{3}{2})}} {j(t-\frac{3}{2})} \Big\} $

Simplify using euler's crap:

$ -\frac{2}{\pi}\Bigg\{ \frac{sin(3(t-\frac{3}{2}))} {t-\frac{3}{2}} \Bigg\} $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009