Revision as of 14:14, 24 November 2008 by Cdleon (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Table of Laplace transforms

We assume $ s = j \omega $

  • $ f(t) \rightarrow F(s) $
  • $ K \delta(t) \rightarrow K $
  • $ K u(t) \rightarrow \frac{K}{s} $
  • $ r(t) \rightarrow \frac{1}{s^2} $
  • $ t^{n} u(t) \rightarrow \frac{n!}{s^{n+1}} $
  • $ e^{-at} \rightarrow \frac{1}{s+a} $
  • $ te^{-at} \rightarrow \frac{1}{(s+a)^{2}} $
  • $ t^{n}e^{-at} \rightarrow \frac{n!}{(s+a)^{n+1}} $
  • $ sin(\omega t)u(t) \rightarrow \frac{\omega}{s^{2}+w^{2}} $
  • $ cos(\omega t)u(t) \rightarrow \frac{s}{s^{2}+w^{2}} $
  • $ e^{-at}sin(\omega t)u(t) \rightarrow \frac{\omega}{(s+a)^{2}+w^{2}} $
  • $ e^{-at}cos(\omega t)u(t) \rightarrow \frac{s+a}{(s+a)^{2}+w^{2}} $
  • $ tsin(\omega t)u(t) \rightarrow \frac{2\omega s}{(s^2+\omega ^2)^{2}} $
  • $ tcos(\omega t)u(t) \rightarrow \frac{(s^2 - \omega ^2)}{(s^2+\omega ^2)^{2}} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett