Revision as of 20:10, 23 November 2008 by Sranka (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Laplace Transform

The Laplace transform of a function f(t), defined for all real numbers, is the function F(s), defined by:

$ F(s) = \mathcal{L} \left\{f(t)\right\}=\int_{-\infty}^{\infty} e^{-st} f(t) \,dt. $

Region of convergence

The Laplace transform F(s) typically exists for all complex numbers such that Re{s} > a, where a is a real constant which depends on the growth behavior of f(t), whereas the two-sided transform is defined in a range

a < Re{s} < b. The subset of values of s for which the Laplace transform exists is called the region of convergence (ROC) or the domain of convergence. In the two-sided case, it is sometimes called the strip of convergence.

The integral defining the Laplace transform of a function may fail to exist for various reasons. For example, when the function has infinite discontinuities in the interval of integration, or when it increases so rapidly that exp(-pt) cannot damp it sufficiently for convergence on the interval to take place. There are no specific conditions that one can check a function against to know in all cases if its Laplace transform can be taken, other than to say the defining integral converges. It is however easy to give theorems on cases where it may or may not be taken.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn