Revision as of 16:29, 10 November 2008 by Drmorris (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

As it was difficult to contribute something unique about sampling, I thought I would add a few examples using the theories.

Sampling Theorem: Let $ \omega_m $ be a non-negative number.

Let x(t) be a signal with $ \chi(\omega)=0 $ when $ |\omega|<\omega_m $.

Consider samples x(nT), for n=...,-2,-1,0,1,2,...

if $ T<\frac{1}{2}\frac{2\pi}{\omega_m} $, where T is the sampling period.

then x(t) can be uniquely recovered from its samples.

Example 1

P: A real-valued signal x(t) is known to be uniquely determined by its samples when the sampling frequency is $ \omega_s=10000\pi $. For what values of $ \omega $ is $ \chi(j\omega) $ guaranteed to be zero?

S: $ \omega_s=2\omega_m $

  $ 10000\pi=2\omega_m $               
  $ \omega_m=5000\pi $      

To guarantee $ \chi(j\omega)=0 $, $ |\omega|>\omega_m $,

so $ |\omega|>5000\pi $

Example 2

P: A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff frequency $ \omega_c=1000\pi $. If impulse-train sampling is performed on x(t), which of the following sampling periods would guarantee that x(t) can be recovered from its sampled version using an appropriate lowpass filter? a)$ T=0.5x10^{-3} $ b)$ T=2x10^{-3} $ c)$ T=1x10^{-4} $

S: a)$ \omega_c=1000\pi $ and to guarantee it can be recovered $ T<\frac{1}{2}\frac{2\pi}{\omega} $

    $ 0.5x10{-3}<\frac{1}{2}\frac{2\pi}{1000\pi} $
    $ 0.5x10{-3}<\frac{1}{1000} $
    $ 0.5<1 $, true.
  b)$ \omega_c=1000\pi $ and to guarantee it can be recovered $ T<\frac{1}{2}\frac{2\pi}{\omega} $
    $ 2x10{-3}<\frac{1}{2}\frac{2\pi}{1000\pi} $
    $ 2x10{-3}<\frac{1}{1000} $
    $ 2<1 $, false.
  c)$ \omega_c=1000\pi $ and to guarantee it can be recovered $ T<\frac{1}{2}\frac{2\pi}{\omega} $
    $ 10{-4}<\frac{1}{2}\frac{2\pi}{1000\pi} $
    $ 10{-4}<\frac{1}{1000} $
    $ 0.1<1 $, true.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics