Revision as of 15:25, 9 November 2008 by Park1 (Talk)

Sampling theorem

Here is a signal, x(t) with X(w) = 0 when |W| > Wm.


With sampling period, T, samples of x(t),x(nT), can be obtained from x(t), where n = 0 +-1, +-2, ....


The sampling frequency is $ \frac{2 * \ pi}{T} $. It is called Ws.


If Ws is greater than 2Wm, x(t) can be recovered from its samples.


Here, 2Wm is called the "Nyquist rate".


To recover, first we need a filter with amplited T when |W| < Wc.


Wc has to exist between Wm and Ws-Wm.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva