Revision as of 11:59, 9 November 2008 by Zcurosh (Talk)

Impulse-train Sampling

One type of sampling that satisfies the Sampling Theorem is called impulse-train sampling. This type of sampling is achieved by the use of a periodic impulse train multiplied by a continuous time signal, $ x(t)\! $. The periodic impulse train, $ p(t)\! $ is referred to as the sampling function, the period, $ T\! $, is referred to as the sampling period, and the fundamental frequency of $ p(t)\! $, $ \omega_s = \frac{2\pi}{T}\! $, is the sampling frequency. We define $ x_p(t)\! $ by the equation,

$ x_p(t) = x(t)p(t)\! $, where
$ p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\! $

Graphically, this equation looks as follows,

             $ x(t)\! $ ----------> x --------> $ x_p(t)\! $
                              ^
                              |
                              |
                  $ p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\! $

By using linearity and the sifting property, $ x_p(t)\! $ can be represented as follows,

$ x_p(t) = x(t)p(t)\! $

     $        = x(t)\sum^{\infty}_{n = -\infty} \delta(t - nT)\! $
     $        =\sum^{\infty}_{n = -\infty}x(t)\delta(t - nT)\! $
     $        =\sum^{\infty}_{n = -\infty}x(nT)\delta(t - nT)\! $

Now, in the time domain, $ x_p(t)\! $ looks like a group of shifted deltas with magnitude equal to the value of $ x(t)\! $ at that time, $ nT\! $, in the original function. In the frequency domain, $ X_p(\omega)\! $ looks like shifted copies of the original $ X(\omega)\! $ that repeat every $ \omega_s\! $, except that the magnitude of the copies is $ \frac{1}{T}\! $ of the magnitude of the original $ X(\omega)\! $.

Why does $ X_p(\omega)\! $ look like copies of the original $ X(\omega)\! $?

This answer can be found simply by using the Fourier Transform of the $ X_p(\omega)\! $.

$ X_p(\omega) = F(x(t)p(t))\! $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch