Revision as of 13:09, 24 October 2008 by Jamorale (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Differentiation in time FT

Nobody as talked much about this one so i thought i should give it a try. We want to prove that the F.T. of $ \frac{d}{dt}x(t) $ is $ j\omega X(\omega) \,\ $

Proof: Differentiating the inverse Fourier Transform $ X(\omega) \,\ $ with respect to t we get.

$ \frac{d}{dt} [\frac{1}{2pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega ] $

$ = \frac{1}{2pi} \int_{-\infty}^{\infty} X(\omega) \frac{d}{dt} e^{j\omega t}d\omega $

$ = \frac{1}{2pi} \int_{-\infty}^{\infty} [j\omega X(\omega)] e^{j\omega t} d\omega $

$ = F^{-1}[j\omega X(\omega)] \,\ $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett