Revision as of 09:53, 12 October 2008 by Amelnyk (Talk)

Test Correction of # 3

An LTI system has unit impulse response $ h[n] = u[-n] $

Compute the system's response to the input $ x[n] = 2^{n}u[-n] $

(Simplify answer until all summation signs disappear.)

h[n] = u[-n]

x[n] = $ 2^{n} $u[-n]

y[n] = x[n] * h[n]

= $ \sum^{\infty}_{k = -\infty} 2^{k}u[-k]u[-n--k] $

since -k > 0 and k < 0 the summation parameters change

= $ \sum^{0}_{k = -\infty} 2^{k}u[-n+k] $

other step function changes parameters again

n = k

= $ \sum^{0}_{k = n} 2^{k} $


= $ \sum^{-n}_{0} \frac{1}{2}^{k} $ since n <= 0; </math>

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva