Specify a Fourier transform $ X(w) $
- $ X(w)=\frac{1}{4+jw} $
Inverse Fourier transform of $ X(w) $
- $ \begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega \\& =\frac {1}{2\pi}\int_{-\infty}^{\infty}\left (\frac{1}{4+jw}\right )e^{j\omega t}d\omega \end{align} $