$ x(t) = e^{-3|t-2|} $
Noticing that there is an absolute value, we can proceed to divide in tow cases.
When
$ t-2 < 0 \rightarrow x(t) = e^{3t-6} $
and when,
$ t-2 >0 \rightarrow x(t) = e^{-3t-6} $
So, we can then compute the Fourier series by adding the integrals of each diferent case.
$ \ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $