Revision as of 14:20, 8 October 2008 by Jmazzei (Talk)

$ \mathcal{X}(\omega) = \left\{ {\begin{array}{*{20}c} {1,} & {-2 \le \omega \le 0} \\ { -1,} & {0 \le g(x) \ge 2} \\ {0,} & {| \omega| > 2} \\ \end{array}} \right. $


$ \ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega $

$ \ x(t)=\frac{1}{2\pi}\int_{-2}^{0}e^{j\omega t}\,d\omega + \frac{1}{2\pi}\int_{0}^{2}-e^{j\omega t}\,d\omega $

$ x(t)=\frac{1}{2\pi}(\frac{1}{jt} - \frac{e^{-j 2 t}}{jt}) + \frac{1}{2\pi}(-\frac{e^{j 2 t}}{jt} + \frac{1}{jt}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett