Fourier Transform
$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $
$ x(t)=(t-1)e^{-6t+6}u(t-1) \,\ $
$ X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \; $
$ x(t) \,\ $looks like $ te^{-6t}u(t) \,\ $ so we evaluate that
the F.T of $ te^{-6t}u(t) \,\ $ is
$ \int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \; $