Revision as of 18:37, 7 October 2008 by Jamorale (Talk)

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=(t-1)e^{-6t+6}u(t-1) \,\ $

$ X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \; $


$ x(t) \,\ $looks like $ te^{-6t}u(t) \,\ $ so we evaluate that

the F.T of $ te^{-6t}u(t) \,\ $ is

$ \int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \; $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang