Revision as of 11:47, 8 October 2008 by Jmazzei (Talk)

$ \ x(t) = e^{-2|t|}cos(8t) $

$ X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang