Revision as of 16:55, 7 October 2008 by Park1 (Talk)

$ x(t) = e^{-|t-1|} \, $

$ X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt $

$ X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]_{\infty}^{0}}}}+{\left.\frac{e^{1}e^{-(1+jw)t}}{1+jw}\right]_{\infty}^{0}}}} $

</math>

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett