Revision as of 16:47, 7 October 2008 by Park1 (Talk)

$ x(t) = e^{-|t-1|} \, $

$ X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{(1+jw)t}dt $

$ X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]_{\infty}^{0} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett