Revision as of 10:43, 7 October 2008 by Nablock (Talk)

$ X(w) = \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9) $

$ x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw $

$ = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9)] e^{jwt} dw $


$ = \frac{3j - 7}{2}\int^{\infty}_{- \infty}\delta (w -2\pi) e^{jwt} dw + \frac {5j - 9}{2}\int^{\infty}_{- \infty}\delta (w + 2\pi) e^{jwt} dw $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman