Revision as of 13:14, 6 October 2008 by Chanw (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ X(\omega) = 2\pi e^{4j\omega}\, $

We kenw that the Fourier transformation of $ x(t - t_o)\, $ is equal to $ e^{-j\omega t_o} X(\omega)\, $

Using this property, we can solve the question

$ X(\omega) = 2\pi e^{4j\omega} Y(\omega)\, $ where $ Y(\omega) = 1\, $

$ y(t) = \delta(t)\, $

$ x(t) = \frac{1}{2\pi} \int^{\infty}_{-\infty}2\pi e^{4j\omega} Y(\omega) dw\, $

$ x(t) = \int^{\infty}_{-\infty}e^{4j\omega} Y(\omega) dw\, $

$ x(t) = \hat{f} (e^{4j\omega } Y(\omega))\, $

$ x(t) = \delta(t+4)\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang