Revision as of 17:46, 6 October 2008 by Dkamboj (Talk)

From the memoryless property of Exponential Distribution function:

Suppose E(1,λ) and E(1,μ) are independent, then;

P[min{ E(1,λ) , E(1,μ) } > t] = P[E(1,λ) > t] . P[E(1,μ) } > t]

= exp (-λt) . exp (-μt)

= exp {-(λ + μ)t}

which shows that minimum of E1,λ and E1,μ is exponentially distributed.

So,

E(1, λ1+ λ2+ λ3+……. λn) = min { E(1,λ1), E(1,λ2), E(1,λ3), ……….., E(1,λn) }

Here, if we put λ = 1, then;

E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }'

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin