Revision as of 12:36, 26 September 2008 by Willi155 (Talk)

The function y(t) in this example is the periodic continuous-time signal cos(t) such that

$ y(t) = \ cos(t) $

where cos(t) can be expressed by the Maclaurin series expansion

$ \ cos(t) = \sum_{n=0}^\infty \left (-1 \right )^n \frac{t^{2n}}{ \left(2n \right )!} $

and its Fourier series coefficients are described by the equation

$ \ a_k = \frac{1}{T}\int_{T}^{\infty} y(t)e^{-jk\omega_0t}\, dt $

where $ \omega_0 = \frac{2\pi}{T} = 1 $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva