Revision as of 17:30, 25 September 2008 by Tsafford (Talk)

CT LTI Impulse Response

The system $ y(t) = 35x(t) - 2x(t+5) $ is LTI

Let's compute h(t):

$ x(t) = \delta(t) $

$ h(t) = 35\delta(t) - 2\delta(t+5) $

Response to My Function From Part 1

The function I chose for part 1 was

$ x(t) = sin(14t)+(1+3j)cos(2t) = \frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2} $

So lets compute the system's response.

Since the equation is already expressed as a sum of complex exponentials, we need only multiply the input signal by H(t).

Let's calculate it:

$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ H(j\omega)=\int_{-\infty}^\infty (35\delta(\tau) - 2\delta(\tau+5))e^{-j\omega\tau}d\tau $

Using the sifting property we see that we get $ 35e^{0}-2e^{5 j\omega} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman