Revision as of 06:56, 26 September 2008 by Kschrems (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Define a DT LTI System

$ \,\ y[n] = 5 * x[n-5] + 6 * x[n-6] $

a) h[n] and H[z]


In order to find h[n], we input $ x[n] = \delta [n] $ to y[n]. h[n] is then the unit impulse response.

$ \,\ x[n] = \delta [n] $
$ \,\ h[n] = 5 * \delta [n-5] + 6 * \delta [n+6] $

H[z] is the system's function, and is defined by:

$ \sum_{m = -\infty}^{\infty} h[m] * Z $-m
$ \,\ H[z] = \sum_{m = -\infty}^{\infty} ( 5 * \delta [n-5] + 6 * \delta [n+6] ) * Z $-m

This function will only be valid when n = 5 or n = -6 due to the $ \delta $s. Therefore, the end result is:
$ \,\ H[z] = 5 * Z $5$ \,\ + 6 * Z $-6

b) Response of Signal in Question 1


From Question 1: Unfortunately, I did not make a DT signal for Parts 1/2. Instead of going back and redoing my work, I am going to "steal" the work of a Mr. Collin Phillips (my apologies and gratitude to Mr. Collin Phillips).

According to his work:

  • $ \,\ X[n] = 3cos(3\pi n + \pi) $
  • $ \,\ a_0 = 0 $
  • $ \,\ a_1 = -3 $
  • $ \,\ a_k = 0 $ elsewhere
  • $ \,\ N = 2 $
  • $ \,\ k = 3 $


Response of the System $ \,\ y[n] = \sum_{k = <N>}^{\infty} a_k H[e $$ j2\pi k/N $$ \,\ ]e $$ jk(2\pi /N) n $

Because $ a_k $ only has one value, this shouldn't be that hard to calculate.

$ \,\ a_k $ is only valid at $ a_1 = -3 $. Therefore...

$ \,\ Z = e $$ jk(2\pi /N) $

$ \,\ y[n] = -3 * [5 * e $$ (j2\pi5*3/2) $$ \,\ + 6 * e $$ (j2\pi*-6*3/2) $$ \,\ ] * e $$ (j3*2\pi n/2) $

$ \,\ y[n] = -3 * [5 * e $$ (j\pi15) $$ \,\ + 6 * e $$ (-j\pi*18) $$ \,\ ] * e $$ (j3*\pi* n) $

$ \,\ y[n] = -15 * e $$ j3\pi(5 + n) $$ \,\ - 18 * e $$ j3\pi(n - 6) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett