Revision as of 14:12, 25 September 2008 by Dhopper (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ x[n] = (-1)^n $

Computing the Fourier series coefficients...

$ a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n]e^{-jK \frac{2\pi}{N}n} $

$ N = 2 $ due to the signal switching between 1 and -1.

$ a_k = \frac{1}{2} \sum_{n=0}^{1} x[n]e^{-jK \pi n} $

$ K = 0,1 $ due to the fundamental period of $ N = 2 $

$ a_0 = \frac{1}{2} \sum_{n=0}^{1} x[n] $

$ a_0 = (1 + -1) = 0 $

$ a_1 = \frac{1}{2} \sum_{n=0}^{1} x[n]e^{-j \pi n} $

$ a_1 = \frac{1}{2} (x[0] + x[1]e^{-j \pi}) $

$ a_1 = \frac{1}{2} (1 + (-1)(-1)) = 1 $

Now that I've solved an easy one (hopefully), I want to try a harder one.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn