Fourier Transform
Let $ x(t)=sin(\pi t) + cos(2\pi t) $
Remember that the formula for CT Fourier Series are:
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
Let $ x(t)=sin(\pi t) + cos(2\pi t) $
Remember that the formula for CT Fourier Series are:
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.