Revision as of 05:50, 25 September 2008 by Serdbrue (Talk)

CT LTI system

The system is:

$ y(t)=10x(t)+x(t-1) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (t) => System =>10 d (t) + d(t-1)\, $
$ h(t)=10d(t) +d(t-1)\, $
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt $
$ H(s)=\int_{-\infty}^{\infty} (10d(t) +d(t-1))e^{-s t}dt $

Using the shifting property,

$ H(s)=10 e^{0 s} + e^{-1 s} \, $
$ H(s)=10 + e^{- s} \, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang