Revision as of 14:32, 19 September 2008 by Hartmand (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Given the definition of Linear systems we know the response to $ \alpha x_1(t) + \beta x_2(t) $ is $ \alpha y_1(t)+ \beta y_2(t). $

Consider the system:


$ e^{-2jt}\to F ( e^{-2jt} ) \to te^{2jt} $


From the given system we know

$ x(t)\to F( x(t) )\to tx(-t) $

Euler's formula allows to rewrite $ e^{iy} $ as $ e^{iy}=cos{y}+i*sin{y} $

Using this we deduct that x(t) = cos(2t)= $ \frac{e^{2jt}+e^{-2jt}}{2} $

and when we plug it into our system we see $ \frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t) $

Therefore we can confidently say that our system yields the output y(t) = t*cos(2t) when the input

x(t) = cos(2t).

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn