Revision as of 05:24, 19 September 2008 by Sje (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The basics of linearity

$ e^{(2jt)} $ --->[system]--->$ te^{(-2jt)} $

$ e^{(-2jt)} $ --->[system]--->$ te^{(2jt)} $

$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $

$ \cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2} $

$ cos 2t = {e^{2jt} \over 2} + {e^{-2jt} \over 2} $

$ 1/2 e^{(2jt)} $ --->[system]--->$ 1/2 te^{(-2jt)} $

$ 1/2 e^{(-2jt)} $ --->[system]--->$ 1/2 te^{(2jt)} $

$ 1/2 te^{(-2jt)} + 1/2 te^{(2jt)} = {te^{2jt} + te^{-2jt} \over 2} = t{{e^{2jt} + e^{-2jt}} \over 2} = tcos(2t) $

thus, the system's response to cos(2t) is tcos(2t).

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett