Revision as of 12:43, 18 September 2008 by Vhsieh (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The basics of linearity

$ cos(2t)=\frac{1}{2}(e^{2jt}+e^{-2jt}) \! $


We are given that the system's output for $ e^{2jt} \! $ is $ t*e^{-2jt} \! $, and the output for $ e^{-2jt} \! $ is $ t*e^{2jt} \! $. Since the system is linear, we can say that $ \frac{1}{2}(te^{-2jt}+te^{2jt})=tcos(2t) $.


It is rather straightforward.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett