Revision as of 05:59, 18 September 2008 by Phscheff (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Given that the response to $ x(t)=exp(2jt) $ is $ y(t)=t*exp(-2jt) $, and its response to $ x(t)=exp(-2jt) $ is $ y(t)=t*exp(2jt) $. What is the systems response to $ x(t)=cos(2t) $?

Solution

If a system is linear we know that:

$ ax(t)+bx(t)=ay(t)+by(t) $

Using Euler's Method we know that:

$ exp(jt)=cos(t)+jsin(t) $

Given this:

$ exp(2jt)+exp(-2jt)=cos(2t)+j*sin(2t)+cos(-2t)+j*sin(-2t) $

$ exp(2jt)+exp(-2jt)=cos(2t)+j*sin(2t)+cos(2t)-j*sin(2t) $

$ exp(2jt)+exp(-2jt)=2cos(2t) $

So now:

$ .5*2cos(2t)=cos(2t) $

$ cos(2t)-->.5*(t*exp(2jt)+t*exp(-2jt)) $

$ cos(2t)--> t*cos(2t) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett