Revision as of 15:51, 12 September 2008 by Dbarjum (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

TIME INVARIANCE

Let " $ \Rightarrow $ " represent a system.

If for any signal $ X(t)\Rightarrow Y(t) $ implies that $ X(t - t_o)\Rightarrow Y(t - t_o) $ then the system is time invariant.

TIME-INVARIANT SYSTEM

$ X(t)\Rightarrow Y(t) = a*X(t) $ where $ a \in \mathbb{{C}} $ is a time invariant system.


PROOF

$ X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o) $


$ X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow W(t) = a*Y(t) = a*X(t - t_o) $


$ W(t) = Z(t) \Rightarrow $ The system is time-invariant

TIME-VARIANT SYSTEM

ECE 301 lectures are a time variant system. If I show up to class on time on X day, I will listen to the entire lecture (signal). If my friend on the other hand, shows up 10 minutes late to lecture, he will have missed 10 minutes of lecture (signal). Therefore, ECE 301 lectures are a "time-variant" system.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics