Revision as of 11:20, 12 September 2008 by Amelnyk (Talk)

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way $ x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++ = a*cos(t)+b*sin(t) = z(t) x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++ $

Reverse-Way $ cos(t) = x1(t)*a +++ = a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t) sin(t) = x2(t)*b +++ $

since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way

$ y[n] = 2*x[n]^3 x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++ = a*2*x1[n]^3+2*b*x2[n]^3 x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++ $

Reverse-way

$ x1[n] -> (X)*a +++ = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3 x2[n] -> (X)*b +++ $

However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett