Revision as of 11:20, 12 September 2008 by Amelnyk (Talk)

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way $ x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++ = a*cos(t)+b*sin(t) = z(t) x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++ $

Reverse-Way

cos(t) = x1(t)*a +++

            =   a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)

sin(t) = x2(t)*b +++


since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++

Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal