The theorem of total probalility states that
$ P(A)=P(A|C)P(C)+P(A|C^c)P(C^c) $
$ P(A|B)=P(A|B \bigcap C)P(C|B)+P(A|B \bigcap C^c)P(C^c|B) $
$ P(A|B \bigcap C)P(C \bigcap B)/P(B) $
The theorem of total probalility states that
$ P(A)=P(A|C)P(C)+P(A|C^c)P(C^c) $
$ P(A|B)=P(A|B \bigcap C)P(C|B)+P(A|B \bigcap C^c)P(C^c|B) $
$ P(A|B \bigcap C)P(C \bigcap B)/P(B) $