Contents
Instructions
Homework 3 can be downloaded here on the ECE 302 course website.
Problem 1: Monte Hall, twisted
http://nostalgia.wikipedia.org/wiki/Monty_Hall_problem Explains the original Monty Hall problem and then the problem considering two contestants are involved.
HW3.1.a Zhongtian Wang_ECE302Fall2008sanghavi
HW3.1.a Shao-Fu Shih_ECE302Fall2008sanghavi
HW3.1.a Beau "ballah-fo-life" Morrison_ECE302Fall2008sanghavi
HW3.1.a Suan-Aik Yeo_ECE302Fall2008sanghavi
HW3.1.a Chris Wacnik_ECE302Fall2008sanghavi
HW3.1.a Dan Van Cleve_ECE302Fall2008sanghavi
HW3.1.a Joe Gutierrez_ECE302Fall2008sanghavi
HW3.1.b Zhongtian Wang & Jonathan Morales_ECE302Fall2008sanghavi
HW 3.1b Albert Lai_ECE302Fall2008sanghavi
HW3.1.b Spencer Mitchell_ECE302Fall2008sanghavi
HW 3.1b Sahil Khosla_ECE302Fall2008sanghavi
HW 3.1b Virgil Hsieh_ECE302Fall2008sanghavi
HW 3.1b Ben Wurtz_ECE302Fall2008sanghavi
HW 3.1b Vivek Ravi_ECE302Fall2008sanghavi
Problem 1: Monte Hall, twisted
HW3.1.b Anand Gautam_ECE302Fall2008sanghavi
HW3.1.b Steve Streeter_ECE302Fall2008sanghavi
HW3.1.b Kushagra Kapoor_ECE302Fall2008sanghavi
HW3.1.b Anthony O'Brien_ECE302Fall2008sanghavi
HW3.1.b Seraj Dosenbach_ECE302Fall2008sanghavi
HW3.1b Priyanka Savkar_ECE302Fall2008sanghavi
Problem 2: A Bayesian Proof
HW3.2 - Steve Anderson_ECE302Fall2008sanghavi
HW3.2 Tiffany Sukwanto_ECE302Fall2008sanghavi
HW3.2 Sang Mo Je_ECE302Fall2008sanghavi
HW3.2 Emir Kavurmacioglu_ECE302Fall2008sanghavi
HW3.2 Sourabh Ranka_ECE302Fall2008sanghavi
Problem 3: Internet Outage
HW3.3 Gregory Pajot_ECE302Fall2008sanghavi
HW3.3 Monsu Mathew_ECE302Fall2008sanghavi
HW3.3 Joe Romine_ECE302Fall2008sanghavi
HW3.3 Katie Pekkarinen_ECE302Fall2008sanghavi
HW3.3 Jayanth Athreya_ECE302Fall2008sanghavi
HW3.3 Steven Millies_ECE302Fall2008sanghavi
Problem 4: Colored Die
HW3.4.a Seraj Dosenbach_ECE302Fall2008sanghavi
HW3.4.a Shweta Saxena_ECE302Fall2008sanghavi
HW3.4.a Joshua Long_ECE302Fall2008sanghavi
HW3.4.a Eric Zarowny_ECE302Fall2008sanghavi
HW3.4.a Anand Gautam_ECE302Fall2008sanghavi
HW3.4.b Joon Young Kim_ECE302Fall2008sanghavi
HW3.4.b Jared McNealis_ECE302Fall2008sanghavi
HW3.4.b Seraj Dosenbach_ECE302Fall2008sanghavi
HW 3.4.c Junzhe Geng_ECE302Fall2008sanghavi In this problem, we are asked to find the possibility of selecting a 3-red-face die when the first three rolls all give red faces. which is to find P(3-R-F|3R) according to formula: P(3-R-F|3R)=P(3-R-F n 3R)/P(3R), P(3-R-F n 3R) is easy to find. to find P(3R), we need to calculate each cases: selected 1-R-F(one red face), 2-R-F, or 3-R-F thus, P(3R)=P(3R n 1-R-F)+P(3R n 2-R-F)+P(3R n 3-R-F) each of those are not hard to find. my final result was 3/4. Hope it is right.
HW3.4 Aishwar Sabesan _ECE302Fall2008sanghavi
HW3.4c AJ Hartnett_ECE302Fall2008sanghavi
HW3.4a Jaewoo Choi_ECE302Fall2008sanghavi
HW3.4c Patrick M. Avery Jr._ECE302Fall2008sanghavi
Problem 5: Fuzzy Logic
3.5 - Nicholas Browdues_ECE302Fall2008sanghavi
3.5 - Divyanshu Kamboj_ECE302Fall2008sanghavi
3.5 - Katie Pekkarinen_ECE302Fall2008sanghavi
3.5 - Caleb Ayew-ew_ECE302Fall2008sanghavi
3.5 - Brian Thomas_ECE302Fall2008sanghavi
3.5 - Justin Mauck_ECE302Fall2008sanghavi