Revision as of 14:12, 6 December 2020 by Merrill8 (Talk | contribs)


Main Discussion

Galois Group

Now that groups and fields have been described, it is time to define the Galois group.

For starters, define a group G. Referring back to field extensions, if there exists an extension F of Q, then there exists a grouping of automorphisms of Q onto F. Let the group G be the container of these automorphisms. In general, this basic definition is referred to as the Galois group of the field extension. However, if the field F is actually the splitting field of a polynomial, then it can be called the Galois group of that polynomial.

If the Galois group is a grouping of automorphisms of a field, then how can one know it is a group? What is its operation? A Galois group makes use of function composition as its operation,

So, what's the purpose of such an abstractly defined structure? The answer to this question involves what a Galois group is capable of doing. For instance, if a Galois group is found for a polynomial p(x), and one proves that this Galois group is soluble, then the polynomial has radical roots. Back to Walther MA271 Fall2020 topic1

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang