Revision as of 23:21, 2 December 2018 by Gould7 (Talk | contribs)

Coding the Star Spangled Banner in MATLAB


Using the sound function in Matlab, we are able to create a song using sine waves with specific frequencies. Each note has certain frequency that corresponds to it and through sine waves and putting it into the sound function we are able to create a song. Below is an example of MATLAB code that can be used to play the star spangled banner.

This section of the code sets the timing for the notes, each time represents what the length of a beat will be.
delta = 1/8192;
t1 = 0:delta:1/2;
t2 = 0:delta:1;
t3 = 0:delta:1/3;
t4 = 0:delta:1/4;
t5 = 0:delta:3/4;
tf = 0:delta:2;

Below is the declarations for all of the notes I use in this song. Notice that t is multiplied by different numbers representing the different frequencies of all the notes.

A5 = sin(2*pi*440*t1);
C5 = sin(2*pi*523*t1);
D5 = sin(2*pi*587*t1);
E5 = sin(2*pi*659*t1);
G5 = sin(2*pi*784*t1);

B52 = sin(2*pi*494*t2);
C52 = sin(2*pi*523*t2);
E52 = sin(2*pi*659*t2);
G52 = sin(2*pi*784*t2);
B62 = sin(2*pi*988*t2);
C62 = sin(2*pi*1047*t2);
D62 = sin(2*pi*1175*t2);
E62 = sin(2*pi*1319*t2);
F62 = sin(2*pi*1397*t2);
G62 = sin(2*pi*1568*t2);

FS = sin(2*pi*739.989*t1);
FS6 = sin(2*pi*1479.978*t1);

B53 = sin(2*pi*494*t3);
C53 = sin(2*pi*523*t3);
E53 = sin(2*pi*659*t3);
G53 = sin(2*pi*784*t3);
A63 = sin(2*pi*880*t3);
B63 = sin(2*pi*988*t3);
C63 = sin(2*pi*1047*t3);
D63 = sin(2*pi*1175*t3);
E63 = sin(2*pi*1319*t3);
F63 = sin(2*pi*1397*t3);
G63 = sin(2*pi*1568*t3);

A54 = sin(2*pi*440*t4);
B54 = sin(2*pi*494*t4);
G54 = sin(2*pi*784*t4);
E54 = sin(2*pi*659*t4);
A64 = sin(2*pi*880*t4);
B64 = sin(2*pi*988*t4);
C64 = sin(2*pi*1047*t4);
D64 = sin(2*pi*1175*t4);
E64 = sin(2*pi*1319*t4);
F64 = sin(2*pi*1397*t4);
G64 = sin(2*pi*1568*t4);

C55 = sin(2*pi*523*t5);
E55 = sin(2*pi*659*t5);
C65 = sin(2*pi*1047*t5);
C6f = sin(2*pi*1047*tf);

A6 = sin(2*pi*880*t1);
B6 = sin(2*pi*988*t1);
C6 = sin(2*pi*1047*t1);
D6 = sin(2*pi*1175*t1);
E6 = sin(2*pi*1319*t1);
F6 = sin(2*pi*1397*t1);
G6 = sin(2*pi*1568*t1);

p = sin(2*pi*1*t1);

sound([G53,E54,C52,E5,G5,C62,p, ...
E63, D64,C62,E5,FS,G52,p, ...
G53,G53,E62,D63,C6,B62,p, ...
A63,B64,C62,C6,G5,E5,C52,p, ...
E5,G53,C52,E5,G5,C62,p, ...
E6,D63,C62,E5,FS,G52,p, ...
G5,G53,E62,D6,C6,B62,p, ...
A6,B63,C62,C6,G5,E5,C5,p, ...
E64,E64,E62,F6,G6,G62,p, ...
F64,E64,D62,E6,F6,F62,p, ...
F6,E62,D64,C6,B62,p, ...
A64,B64,C62,E5,FS,G52,p, ...
G5,C6,C6,C64,B64,A6,A6,A6,D6,F63,E6,D63,C62,B6,p, ...
G53,G53,C62,D63,E63,F63,G62,p, ...
C63,D63,E62,F6,D6,C6f]);

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett