Euler's Equation And De Moivre's Formula
Euler's Equation is put simply as the following:
$ \begin{align} e^{iy} &= \cos(y) + i\sin(y) \end{align} $
In a more general case, it can more important to see if $ z = z + iy $, then $ e^{z} $ is defined to be the complex number
$ \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $