Euler's Equation And De Moivre's Formula
If z = z + iy, then e^{z} is defined to be the complex number
$ \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $
If z = z + iy, then e^{z} is defined to be the complex number
$ \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $