Revision as of 00:43, 20 July 2017 by Oelgendy (Talk | contribs)

a)

$ TEM \to E_z = H_z = 0\\ \left\{ \begin{array}{ll} \bar{E} = E(x,y)e^{-\gamma z}e^{j\omega t} \hspace{1cm} \gamma = \alpha + j\beta\\ \bar{H} = H(x,y)e^{-\gamma z}e^{j\omega t} \hspace{1cm} \beta = \omega\sqrt{\mu \epsilon} \end{array} \right. $ assume these solutions in region between conductors.

solve wave equations: $ \left\{ \begin{array}{ll} \nabla^2\bar{E} + k^2 \bar{E} =0 \hspace{1cm} \text{with BC's to find}\\ \nabla^2\bar{H} + k^2 \bar{E} =0 \hspace{1cm} \bar{E} \text{ and } \bar{H} \end{array} \right. Z = \frac{|E|}{|H|} $
Alternative: from transmission line theory :
$ Z_0 = \sqrt{\frac{L}{C}} (lossless) $
find C by assuming same V on line (or Q)
find L by assuming same I on the line
$ \textbf{Note:}\\ TEM\\ Z_{TEM} = \frac{E_x}{E_y}\\ \bar{H} = \frac{1}{Z_{\text{TEM}}}(\hat{z}x\bar{E}) $

b)

$ find C: C= \frac{Q}{V} \oint \bar{D}\cdot d\bar{s} = Q \\ \int_0^L \int_0^{2\pi}\epsilon E_r(rd\phi dz) = Q\\ \epsilon E_r(2\pi r)L = Q\\ \bar{E} = \frac{Q}{2\pi r\epsilon(L)}\hat{r}\\ \begin{align*} V_2 - V_1 &= - \int_1^2 \bar{E}\cdot dl\\ &=-\int_b^a \frac{Q}{2\pi L\epsilon}\bigg(\frac{1}{r}\bigg)dr\\ &=\frac{Q}{2\pi L\epsilon}\ln\bigg(\frac{b}{a}\bigg) \end{align*} \[C= \frac{2\pi L\epsilon}{\ln\big(\frac{b}{a}\big)}\]\\ $

$ find L: L = \frac{\Phi}{NI}\\ \oint \bar{H}\cdot d\bar{l} = I_{enc}\\ \int_0^{2\pi} H_\phi(rd\phi) = I\\ \bar{H} = \frac{I}{2\pi r}\hat{\phi}\\ \begin{align*} \Phi &= \int \bar{B}\cdot d\bar{s}\\ &=\int_0^L\int_a^b \frac{\mu I}{2\pi r}drdz\\ &= \frac{\mu IL}{2\pi}\ln\bigg(\frac{b}{a}\bigg) \end{align*} dl = dr\hat{r} + rd\phi\hat{\phi} +dz\hat{z}\\ ds_{\phi} = drdz\\ L = \frac{\mu L \ln \big(b/a\big)}{2\pi}\\ Z_o = \sqrt{\frac{L}{C}} = \sqrt{\frac{\frac{\mu L\ln(b/a)}{2\pi}}{{\frac{2\pi L\epsilon}{\ln(b/a)}}}} = \sqrt{\frac{\mu}{\epsilon}\bigg(\frac{\ln(b/a)}{2\pi}\bigg)^2}=\frac{\ln(b/a)}{2\pi}\sqrt{\frac{\mu}{\epsilon}}\\ $

c) c) still supports a TEM mode; a uniformly lossy dielectric results in a non-zero attenuation constant $\alpha$ and a conductance $G$ such that Ez = 0 and Hz = 0. However, if the {\bf conductors} have a large but finite conductivity (no longer PEC), then the Poynting vector must have a component normal to the conductor surface, necessitating the presence of a small axial electric field Ez != 0 (see David K. Cheng, Field and Wave Electromagnetics, 2nd Ed. page 433).

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett